Resonantly forced inhomogeneous reaction-diffusion systems.

نویسندگان

  • C. J. Hemming
  • R. Kapral
چکیده

The dynamics of spatiotemporal patterns in oscillatory reaction-diffusion systems subject to periodic forcing with a spatially random forcing amplitude field are investigated. Quenched disorder is studied using the resonantly forced complex Ginzburg-Landau equation in the 3:1 resonance regime. Front roughening and spontaneous nucleation of target patterns are observed and characterized. Time dependent spatially varying forcing fields are studied in the 3:1 forced FitzHugh-Nagumo system. The periodic variation of the spatially random forcing amplitude breaks the symmetry among the three quasi-homogeneous states of the system, making the three types of fronts separating phases inequivalent. The resulting inequality in the front velocities leads to the formation of "compound fronts" with velocities lying between those of the individual component fronts, and "pulses" which are analogous structures arising from the combination of three fronts. Spiral wave dynamics is studied in systems with compound fronts. (c) 2000 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Front explosion in a resonantly forced complex Ginzburg–Landau system

Periodically forced oscillatory reaction–diffusion systems near the Hopf bifurcation can be modeled by the resonantly forced complex Ginzburg–Landau equation. In the 3:1 resonant locking regime this equation has three stable fixed points corresponding to the phase-locked states in the underlying reaction–diffusion system. Phase fronts separate spatial domains containing the phase-locked states....

متن کامل

Front explosion in a periodically forced surface reaction.

Resonantly forced oscillatory reaction-diffusion systems can exhibit fronts with complicated interfacial structure separating phase-locked homogeneous states. For values of the forcing amplitude below a critical value the front "explodes" and the width of the interfacial zone grows without bound. Such front explosion phenomena are investigated for a realistic model of catalytic CO oxidation on ...

متن کامل

Turbulent fronts in resonantly forced oscillatory systems.

Phase fronts in the forced complex Ginzburg-Landau equation, a model of a resonantly forced oscillatory reaction-diffusion system, are studied in the 3:1 resonance regime. The focus is on the turbulent (Benjamin-Feir-unstable) regime of the corresponding unforced system; in the forced system, phase fronts between spatially uniform phase-locked states exhibit complex dynamics. In one dimension, ...

متن کامل

Nonexistence of Global Solutions in Time for Reaction-Diffusion Systems with Inhomogeneous Terms in Cones

We consider initial-boundary value problems for the reaction-diffusion systems with inhomogeneous terms in cones. In this paper we show the nonexistence of global solutions of the problems in time. Keyword and Phrases: reaction-diffusion, global nonexistence, inhomogeneous term, cone. AMS subject classifications: 35K45, 35K57.

متن کامل

Forced nonlinear resonance in a system of coupled oscillators.

We consider a resonantly perturbed system of coupled nonlinear oscillators with small dissipation and outer periodic perturbation. We show that for the large time t∼ɛ(-2) one component of the system is described for the most part by the inhomogeneous Mathieu equation while the other component represents pulsation of large amplitude. A Hamiltonian system is obtained which describes for the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2000